successive geophones - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

successive geophones - vertaling naar russisch

METHOD OF SOLVING A LINEAR SYSTEM OF EQUATIONS
Successive over-relaxation method; Successive Over Relaxation; Successive over relaxation method; Successive overrelaxation; Successive overrelaxation method; Successive Overrelaxation method; Successive Overrelaxation Method; Successive over relaxation; Gauss-Seidel SOR; SOR method; Successive Over-relaxation
  • Spectral radius <math> \rho(C_\omega) </math> of the iteration matrix for the SOR method <math> C_\omega </math>.
The plot shows the dependence on the spectral radius of the Jacobi iteration matrix <math> \mu := \rho(C_\text{Jac}) </math>.

successive geophones      

нефтегазовая промышленность

последовательные сейсмоприёмники (в системе наблюдений)

successive overrelaxation         

математика

последовательная сверхрелаксация

successive approximation         
WIKIMEDIA DISAMBIGUATION PAGE
Successive Approximation; Successive approximation (disambiguation)

общая лексика

последовательная аппроксимация

последовательное приближение

Definitie

assignation
n. (formal) to make an assignation

Wikipedia

Successive over-relaxation

In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process.

It was devised simultaneously by David M. Young Jr. and by Stanley P. Frankel in 1950 for the purpose of automatically solving linear systems on digital computers. Over-relaxation methods had been used before the work of Young and Frankel. An example is the method of Lewis Fry Richardson, and the methods developed by R. V. Southwell. However, these methods were designed for computation by human calculators, requiring some expertise to ensure convergence to the solution which made them inapplicable for programming on digital computers. These aspects are discussed in the thesis of David M. Young Jr.

Vertaling van &#39successive geophones&#39 naar Russisch